Graded limits of finite-dimensional modules over

quantum loop algebras

Katsuyuki Naoi
Tokyo University of Agriculture and Technology

Tsukuba Workshop on Infinite-Dimensional Lie Theory
and Related Topics

October 21st, 2014

Katsuyuki Naoi (TUAT) Graded limits of f.d. mod. over Uqg(Lg)



Introduction

Theorem (Jacobi-Trudi determinant formula)
For a partition A\ = (A\; > --- > \,),

SA(X) = det (h)‘i_i+j(x))1§i,j§n'

sa(x): Schur polynomial, h(x): complete symm. polynomial.
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Introduction

Theorem (Jacobi-Trudi determinant formula)
For a partition A\ = (A\; > --- > \,),

SA(X) = det (h)‘i_i+j(x))1§i,j§n'

sa(x): Schur polynomial, h(x): complete symm. polynomial.

‘Translation in the 5In+1—modu|es‘

A€ PFidom.int. wt~ A= (A > > A,) by A =30 i (i, A)

ch V(X) = sy(x), ch V(kwy) = he(x) (V(A): simple sl,;1-mod.)

s ch V(X) = det <ch V(O —i+ j)wl))

1<ij<n
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Introduction

Q. Does this formula hold in other types?
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Introduction

Q. Does this formula hold in other types? No!

ch V(\) # det (ch V(O —i+ j)wl))

)
1<ij<n

if g # sl,.1 (though there may be several generalizations.)
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Introduction

Q. Does this formula hold in other types? No!

ch V(\) # det (ch V(O —i+ j)wl))

1<ij<n’
if g # sl,.1 (though there may be several generalizations.)

However this does hold in other types, if the g-modules are

replaced by U,(Lg)-modules! More precicely, we can show that

ch Lg(A) = det (ch Lg((Ni —i +j)wl))

1<ij<n
for g of type ABCD, where Ly(;t) are minimal affinizations

(a special class of f.d. simple U,(Lg)-modules explained later).
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1. Definition of minimal affinizations Lq(\)
2. Main Theorem (JT formula for ch Ly()))

3. Proof (Combination of results proved by
[N], [Chari-Greenstein], [Sam])
In the proof, graded limits (Z-graded g ® C[t]-modules) are used.
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Minimal affinization

g: simple Lie algebra of rank n,

Lg = g® C[t, t71]: loop algebra, ([x Rf,y®gl=[xy]® fg)

Uq(Lg): quantum loop algebra/C(q) (g-analog of U(Lg))

Uq(g): quantum group assoc. with g (g-analog of U(g))
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Minimal affinization

g: simple Lie algebra of rank n,
Lg = g® C[t, t71]: loop algebra, ([x Rf,y®gl=[xy]® fg)

Uq(Lg): quantum loop algebra/C(q) (g-analog of U(Lg))
U

Uq(g): quantum group assoc. with g (g-analog of U(g))
(Note: g=g®1C g®Cl[t,t7!] = Lg)
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Minimal affinization

g: simple Lie algebra of rank n,
Lg = g® C[t, t71]: loop algebra, ([x Rf,y®gl=[xy]® fg)

Uq(Lg): quantum loop algebra/C(q) (g-analog of U(Lg))
U

Uq(g): quantum group assoc. with g (g-analog of U(g))
(Note: g=g®1C g®CJ[t,t7!] = Lg)
Fact

(1) {f.d. simple g-mod.} &L pr L {f.d. simple U,(g)-mod}
w w w

V(\) A V, ()
(2) The cat. of f.d. g-modules and U,(g)-modules are semisimple.
(3) ch V(\) = ch V,(N).
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Minimal affinization

Fact. V: an arbitrary f.d. simple U,(Lg)-module
wINe P st VE VAo, Vo(u)®™(V) as a Uy(g)-module,

In this case, V is called an affinization of V().
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Minimal affinization

Fact. V: an arbitrary f.d. simple U,(Lg)-module
wINe P st VE VAo, Vo(u)®™(V) as a Uy(g)-module,

In this case, V is called an affinization of V().
{ Uy(g)-isom. classes of affiniz. of V,(\)} < partial order is defined

([V] > W] = {mu(V)}M > {mu(W)}u w.r.t. lexicographic order)
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Minimal affinization

Fact. V: an arbitrary f.d. simple U,(Lg)-module

wINe P st VE VAo, Vo(u)®™(V) as a Uy(g)-module,
In this case, V is called an affinization of V().

{ Uy(g)-isom. classes of affiniz. of V,(\)} < partial order is defined

([V] > W] = {mM(V)}M > {mM(W)}H w.r.t. lexicographic order)

Definition
V: minimal affinization of V,(\)

g o V is an affinization of V,(\)

o the isom. class of V is minimal among affiniz. of V().

Katsuyuki Naoi (TUAT) Graded limits of f.d. mod. over Ug(Lg)



Examples of Minimal affinizations

Minimal affinizations for g = sl

When g = sl,,1, “alg. hom. ¢: U,(Lg) - U,(g) (evaluation map)

(g-analog of the map Lg — g: x ® f — f(a)x for any a € C*)

~ *Vg(A): simple Uy(Lg)-mod. <= minimal affinization of V()
(o Va(N) =2 V(N as a U,(g)-mod.)
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Examples of Minimal affinizations

Minimal affinizations for g = sl

When g = sl,,1, “alg. hom. ¢: U,(Lg) - U,(g) (evaluation map)

(g-analog of the map Lg — g: x ® f — f(a)x for any a € C*)

~ *Vg(A): simple Uy(Lg)-mod. <= minimal affinization of V()
(o Va(N) =2 V(N as a U,(g)-mod.)

Remark. If g # sl,,1, evaluation map does not exist.

~> Most of minimal affinizations are reducible as a U,(g)-module,

and it is not easy to determine the decompositions.
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Examples of Minimal affinizations

Minimal affinizations for g = sl

When g = sl,,1, “alg. hom. ¢: U,(Lg) - U,(g) (evaluation map)

(g-analog of the map Lg — g: x ® f — f(a)x for any a € C*)

~ *Vg(A): simple Uy(Lg)-mod. <= minimal affinization of V()
(o Va(N) =2 V(N as a U,(g)-mod.)

Remark. If g # sl,,1, evaluation map does not exist.

~> Most of minimal affinizations are reducible as a U,(g)-module,

and it is not easy to determine the decompositions.

Another example

Kirillov-Reshetikhin modules
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Examples of Minimal affinizations

Minimal affinizations for g = sl

When g = sl,,1, “alg. hom. ¢: U,(Lg) - U,(g) (evaluation map)

(g-analog of the map Lg — g: x ® f — f(a)x for any a € C*)

~ *Vg(A): simple Uy(Lg)-mod. <= minimal affinization of V()
(o Va(N) =2 V(N as a U,(g)-mod.)

Remark. If g # sl,,1, evaluation map does not exist.

~> Most of minimal affinizations are reducible as a U,(g)-module,

and it is not easy to determine the decompositions.

Another example

Kirillov-Reshetikhin modules = minimal affinizations of V,(mw;)
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In the sequel, assume that g is of type ABCD.

Let A € P*, and let Ly(\) be a minimal affinization of V,(\).
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Main Theorem

In the sequel, assume that g is of type ABCD.

Let A € P*, and let Ly(\) be a minimal affinization of V,(\).

Theorem

Assume that (hn, A) =0 !f g: type BC,
(hn—1,A) = (hy, A\) =0 if g: type D.

Then we have

ch Ly(\) = det (ch Lo((Ni — i+j)w1))

)
1<ij<n

where \; := >, (hi, \) € Zyp for 1 <i < n.

Remark. chLq((\; — i+ j)w1) can be written explicitly.
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Comments on the theorem

ch Lg(A) = det (ch Lo((Ni =i +j)wl))

1<ij<n

1. In type A, this is the JT formula since ch L,(\) = ch V(X).

2. In [Nakai-Nakanishi, 06], they have conjectured some formulas

specialize

for g-characters of L,(\) (g-character © — " character).

In fact the specialization of their formula coincides with

det <ch Lo((\ — i +j)w1))

1<ij<n

3. In type B, NN conj. has been proven by [Hernandez, 07].

4. In type CD, any closed character formula for minimal
affinizations has not been obtained before (except for some

special ones such as KR modules).
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Sketch of the proof

Graded limits

Ly(N): Uqg(Lg)-mod./C(q) dt Li(N\): Lg-mod./C (classical limit)
"= 15 (\): glt]-module  (g[t] = g ® C[t] C Lg = g @ C[t, t71])

Fact. Tae C* st. (g@ (t+a)V)Li(A\)=0 (N> 0)
~~ Define an auto. 7, on g[t] by 7,(g @ f(t)) = g @ f(t + a)
L(X) == 72 (L1()\)): graded limit of Ly()\) (Z-graded g[t]-module)

Remark. ch Ly(A\) = ch L(\).
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Sketch of the proof

g=n, P bhedn_: triangular decomosition,

Define A, :={ac AL [a=) mia;, m <1} CA,.
Theorem (N)

Let M(\) be the g[t]-module generated by a vector v with relations

n[tlv =0, (h®t")v =2dg.A(h)vfor hep, £y =0
(fh@t)v =0 for v € A/,

)

Then the graded limit L(\) is isomorphic to M(\).
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Sketch of the proof

Theorem (Chari-Greenstein, 11)

> (~1)*dimHom,(V()), \ g ® V(1))ch M(X) = ch V()
(\s)er(n)

F(1) = {0 5) | 1t = At Dgar, Mty Xa =5} C P* x Zng.

Theorem (Sam, 14)

Setting Hy = det (ch Lo((\ — i + j)wl))

1
1<ij<n

Z (—1)° dim Hom 4 (V(\), /\g ® V(u))Hy = ch V(p).
(As)el(p)
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Sketch of the proof

Theorem (Chari-Greenstein, 11)

> (~1)*dimHom,(V()), \ g ® V(1))ch M(X) = ch V()
(\s)er(n)

F(1) = {0 5) | 1t = At Dgar, Mty Xa =5} C P* x Zng.

Theorem (Sam, 14)

Setting Hy = det (ch Lo((\ — i + j)wl))

1
1<ij<n

Z (—1)° dim Hom 4 (V(\), /\g ® V(u))Hy = ch V(p).
(As)el(p)

o Hy = ch M(A) = ch L(A) = ch Lg()).
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