Graded limits of finite-dimensional modules over quantum loop algebras

Katsuyuki Naoi

Tokyo University of Agriculture and Technology

Tsukuba Workshop on Infinite-Dimensional Lie Theory and Related Topics

October 21st, 2014

Theorem (Jacobi-Trudi determinant formula)

For a partition
$$\lambda = (\lambda_1 \geq \cdots \geq \lambda_n)$$
,

$$s_{\lambda}(x) = \det (h_{\lambda_i - i + j}(x))_{1 \leq i, j \leq n}.$$

 $s_{\lambda}(x)$: Schur polynomial, $h_k(x)$: complete symm. polynomial.

Translation in the \mathfrak{sl}_{n+1} -modules

$$\lambda \in P^+$$
: dom. int. wt $\leadsto \lambda = (\lambda_1 \ge \cdots \ge \lambda_n)$ by $\lambda_i = \sum_{k \ge i} \langle h_k, \lambda \rangle$

$$\operatorname{ch} V(\lambda) = s_{\lambda}(x), \quad \operatorname{ch} V(k\varpi_1) = h_k(x) \quad (V(\lambda): \text{ simple } \mathfrak{sl}_{n+1}\text{-mod.})$$

$$ightsquigarrow \operatorname{ch} V(\lambda) = \det \left(\operatorname{ch} V((\lambda_i - i + j) \varpi_1) \right)_{1 \leq i, j \leq n}.$$

Theorem (Jacobi-Trudi determinant formula)

For a partition $\lambda = (\lambda_1 \geq \cdots \geq \lambda_n)$,

$$s_{\lambda}(x) = \det (h_{\lambda_i - i + j}(x))_{1 \leq i, j \leq n}.$$

 $s_{\lambda}(x)$: Schur polynomial, $h_k(x)$: complete symm. polynomial.

Translation in the \mathfrak{sl}_{n+1} -modules

$$\lambda \in P^+$$
: dom. int. wt $\leadsto \lambda = (\lambda_1 \ge \cdots \ge \lambda_n)$ by $\lambda_i = \sum_{k \ge i} \langle h_k, \lambda \rangle$

$$\operatorname{ch} V(\lambda) = s_{\lambda}(x), \ \operatorname{ch} V(k\varpi_1) = h_k(x) \ (V(\lambda): \text{ simple } \mathfrak{sl}_{n+1}\text{-mod.})$$

$$\rightsquigarrow \operatorname{ch} V(\lambda) = \operatorname{det} \left(\operatorname{ch} V((\lambda_i - i + j)\varpi_1) \right)_{1 \leq i, j \leq n}.$$

Q. Does this formula hold in other types? No!

$$\operatorname{ch} V(\lambda) \neq \operatorname{det} \left(\operatorname{ch} V((\lambda_i - i + j) \overline{\omega}_1) \right)_{1 \leq i, j \leq n}$$

if $\mathfrak{g}
eq \mathfrak{sl}_{n+1}$ (though there may be several generalizations.)

However this does hold in other types, if the \mathfrak{g} -modules are replaced by $U_q(\mathcal{L}\mathfrak{g})$ -modules! More precicely, we can show that

$$\operatorname{ch} L_q(\lambda) = \operatorname{det} \left(\operatorname{ch} L_q((\lambda_i - i + j) \varpi_1) \right)_{1 \le i, j \le n}$$

for $\mathfrak g$ of type ABCD, where $L_q(\mu)$ are minimal affinizations (a special class of f.d. simple $U_q(\mathcal L\mathfrak g)$ -modules explained later)

Q. Does this formula hold in other types? No!

$$\operatorname{ch} V(\lambda) \neq \operatorname{det} \left(\operatorname{ch} V ((\lambda_i - i + j) \varpi_1) \right)_{1 \leq i, j \leq n}$$

if $\mathfrak{g} \neq \mathfrak{sl}_{n+1}$ (though there may be several generalizations.)

However this does hold in other types, if the \mathfrak{g} -modules are replaced by $U_q(\mathfrak{Lg})$ -modules! More precisely, we can show that

$$\operatorname{ch} L_q(\lambda) = \operatorname{det} \left(\operatorname{ch} L_q((\lambda_i - i + j) \varpi_1) \right)_{1 \le i, j \le n}$$

for $\mathfrak g$ of type ABCD, where $L_q(\mu)$ are minimal affinizations (a special class of f.d. simple $U_q(\mathcal L\mathfrak g)$ -modules explained later)

Q. Does this formula hold in other types? No!

$$\operatorname{ch} V(\lambda) \neq \operatorname{det} \left(\operatorname{ch} V \left((\lambda_i - i + j) \varpi_1 \right) \right)_{1 \leq i, j \leq n}$$

if $\mathfrak{g} \neq \mathfrak{sl}_{n+1}$ (though there may be several generalizations.)

However this does hold in other types, if the \mathfrak{g} -modules are replaced by $U_q(\mathcal{L}\mathfrak{g})$ -modules! More precicely, we can show that

$$\operatorname{ch} L_q(\lambda) = \operatorname{det} \left(\operatorname{ch} L_q((\lambda_i - i + j)\varpi_1) \right)_{1 \leq i,j \leq n}$$

for $\mathfrak g$ of type ABCD, where $L_q(\mu)$ are minimal affinizations (a special class of f.d. simple $U_q(\mathcal L\mathfrak g)$ -modules explained later).

Plan

- 1. Definition of minimal affinizations $L_q(\lambda)$
- 2. Main Theorem (JT formula for $\operatorname{ch} L_q(\lambda)$)
- 3. Proof (Combination of results proved by

[N], [Chari-Greenstein], [Sam])

In the proof, **graded limits** (\mathbb{Z} -graded $\mathfrak{g} \otimes \mathbb{C}[t]$ -modules) are used.

Plan

- 1. Definition of minimal affinizations $L_q(\lambda)$
- 2. Main Theorem (JT formula for $\operatorname{ch} L_q(\lambda)$)
- 3. Proof (Combination of results proved by

[N], [Chari-Greenstein], [Sam])

In the proof, **graded limits** (\mathbb{Z} -graded $\mathfrak{g} \otimes \mathbb{C}[t]$ -modules) are used.

Plan

- 1. Definition of minimal affinizations $L_q(\lambda)$
- 2. Main Theorem (JT formula for $\operatorname{ch} L_q(\lambda)$)
- 3. Proof (Combination of results proved by

[N], [Chari-Greenstein], [Sam])

In the proof, **graded limits** (\mathbb{Z} -graded $\mathfrak{g} \otimes \mathbb{C}[t]$ -modules) are used.

 \mathfrak{g} : simple Lie algebra of rank n,

$$\mathcal{L}\mathfrak{g} = \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}]$$
: loop algebra, $([x \otimes f, y \otimes g] = [x, y] \otimes fg)$

$$U_q(\mathcal{L}\mathfrak{g})$$
: quantum loop algebra $/\mathbb{C}(q)$ $(q$ -analog of $U(\mathcal{L}\mathfrak{g}))$

 $U_q(\mathfrak{g})$: quantum group assoc. with \mathfrak{g} $\left(q$ -analog of $U(\mathfrak{g})\right)$

(Note:
$$\mathfrak{g} = \mathfrak{g} \otimes 1 \subseteq \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}] = \mathcal{L}\mathfrak{g}$$
)

- $(1) \begin{tabular}{ll} $\{$f.d. simple \mathfrak{g}-mod.} \end{tabular} \xrightarrow{1:1} $P^+ \stackrel{1:1}{\longleftrightarrow} \{$f.d. simple $U_q(\mathfrak{g})$-mod} \\ & \cup & \cup \\ & V(\lambda) & \lambda & V_q(\lambda) \end{tabular}$
- (2) The cat. of f.d. \mathfrak{g} -modules and $U_q(\mathfrak{g})$ -modules are semisimple.
- (3) $\operatorname{ch} V(\lambda) = \operatorname{ch} V_q(\lambda)$.

 \mathfrak{g} : simple Lie algebra of rank n,

$$\mathcal{L}\mathfrak{g} = \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}]$$
: loop algebra, $([x \otimes f, y \otimes g] = [x, y] \otimes fg)$

$$U_q(\mathcal{L}\mathfrak{g})$$
: quantum loop algebra $/\mathbb{C}(q)$ $(q$ -analog of $U(\mathcal{L}\mathfrak{g}))$

 $U_q(\mathfrak{g})$: quantum group assoc. with \mathfrak{g} $\left(q$ -analog of $U(\mathfrak{g})\right)$

(Note:
$$\mathfrak{g} = \mathfrak{g} \otimes 1 \subseteq \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}] = \mathcal{L}\mathfrak{g}$$
)

- $(1) \begin{tabular}{ll} $\{$f.d. simple \mathfrak{g}-mod.} \end{tabular} \xrightarrow{1:1} $P^+ \stackrel{1:1}{\longleftrightarrow} \{$f.d. simple $U_q(\mathfrak{g})$-mod} \\ & \cup & \cup \\ & V(\lambda) & \lambda & V_q(\lambda) \end{tabular}$
- (2) The cat. of f.d. g-modules and $U_q(\mathfrak{g})$ -modules are semisimple.
- (3) $\operatorname{ch} V(\lambda) = \operatorname{ch} V_q(\lambda)$.

 \mathfrak{g} : simple Lie algebra of rank n,

$$\mathcal{L}\mathfrak{g} = \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}]$$
: loop algebra, $([x \otimes f, y \otimes g] = [x, y] \otimes fg)$

$$U_q(\mathcal{L}\mathfrak{g})$$
: quantum loop algebra $/\mathbb{C}(q)$ $(q$ -analog of $U(\mathcal{L}\mathfrak{g}))$

 $U_q(\mathfrak{g})$: quantum group assoc. with \mathfrak{g} $\left(q$ -analog of $U(\mathfrak{g})\right)$

(Note:
$$\mathfrak{g} = \mathfrak{g} \otimes 1 \subseteq \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}] = \mathcal{L}\mathfrak{g}$$
)

- $(1) \begin{tabular}{ll} $\{$f.d. simple \mathfrak{g}-mod.} \end{tabular} \xrightarrow{1:1} $P^+ \stackrel{1:1}{\longleftrightarrow} \{$f.d. simple $U_q(\mathfrak{g})$-mod} \\ & \cup & \cup \\ & V(\lambda) & \lambda & V_q(\lambda) \end{tabular}$
- (2) The cat. of f.d. g-modules and $U_q(\mathfrak{g})$ -modules are semisimple.
- (3) $\operatorname{ch} V(\lambda) = \operatorname{ch} V_q(\lambda)$.

 \mathfrak{g} : simple Lie algebra of rank n,

$$\mathcal{L}\mathfrak{g} = \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}]$$
: loop algebra, $([x \otimes f, y \otimes g] = [x, y] \otimes fg)$

$$U_q(\mathcal{L}\mathfrak{g})$$
: quantum loop algebra $/\mathbb{C}(q)$ $\left(q$ -analog of $U(\mathcal{L}\mathfrak{g})
ight)$

$$U_q(\mathfrak{g})$$
: quantum group assoc. with \mathfrak{g} $\left(q$ -analog of $U(\mathfrak{g})\right)$

(Note:
$$\mathfrak{g} = \mathfrak{g} \otimes 1 \subseteq \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}] = \mathcal{L}\mathfrak{g}$$
)

- $(1) \begin{tabular}{ll} \{ {\rm f.d. \ simple \ } {\mathfrak g}{\rm -mod.} \} & \stackrel{1:1}{\longleftrightarrow} P^+ \stackrel{1:1}{\longleftrightarrow} \{ {\rm f.d. \ simple \ } U_q({\mathfrak g}){\rm -mod} \} \\ & \cup & \cup & \cup \\ & V(\lambda) & \lambda & V_q(\lambda) \\ \end{tabular}$
- (2) The cat. of f.d. \mathfrak{g} -modules and $U_q(\mathfrak{g})$ -modules are semisimple.
- (3) $\operatorname{ch} V(\lambda) = \operatorname{ch} V_q(\lambda)$.

 \mathfrak{g} : simple Lie algebra of rank n,

$$\mathcal{L}\mathfrak{g}=\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]$$
: loop algebra, $\left(\left[x\otimes f,y\otimes g\right]=\left[x,y\right]\otimes fg\right)$

$$U_q(\mathcal{L}\mathfrak{g})$$
: quantum loop algebra $/\mathbb{C}(q)$ $(q$ -analog of $U(\mathcal{L}\mathfrak{g}))$

 $U_q(\mathfrak{g})$: quantum group assoc. with \mathfrak{g} $\left(q$ -analog of $U(\mathfrak{g})\right)$

(Note:
$$\mathfrak{g} = \mathfrak{g} \otimes 1 \subseteq \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}] = \mathcal{L}\mathfrak{g}$$
)

- $(1) \begin{tabular}{ll} $\{$f.d. simple \mathfrak{g}-mod.} \end{tabular} \xrightarrow{1:1} $P^+ \stackrel{1:1}{\longleftrightarrow} \{$f.d. simple $U_q(\mathfrak{g})$-mod} \\ & \cup & \cup \\ & V(\lambda) & \lambda & V_q(\lambda) \end{tabular}$
- (2) The cat. of f.d. g-modules and $U_q(\mathfrak{g})$ -modules are semisimple.
- (3) $\operatorname{ch} V(\lambda) = \operatorname{ch} V_q(\lambda)$.

 \mathfrak{g} : simple Lie algebra of rank n,

$$\mathcal{L}\mathfrak{g} = \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}]$$
: loop algebra, $([x \otimes f, y \otimes g] = [x, y] \otimes fg)$

$$U_q(\mathcal{L}\mathfrak{g})$$
: quantum loop algebra $/\mathbb{C}(q)$ $(q$ -analog of $U(\mathcal{L}\mathfrak{g}))$

 $U_q(\mathfrak{g})$: quantum group assoc. with \mathfrak{g} (q-analog of $U(\mathfrak{g}))$

(Note: $\mathfrak{g}=\mathfrak{g}\otimes 1\subseteq \mathfrak{g}\otimes \mathbb{C}[t,t^{-1}]=\mathcal{L}\mathfrak{g}$)

- $(1) \begin{tabular}{ll} \{ {\rm f.d. \ simple \ } {\mathfrak g}{\text{-}}{\rm mod.} \} & \stackrel{1:1}{\longleftrightarrow} P^+ \stackrel{1:1}{\longleftrightarrow} \{ {\rm f.d. \ simple \ } U_q({\mathfrak g}){\text{-}}{\rm mod} \} \\ & \cup & \cup & \cup \\ & V(\lambda) & \lambda & V_q(\lambda) \\ \end{tabular}$
- (2) The cat. of f.d. \mathfrak{g} -modules and $U_q(\mathfrak{g})$ -modules are semisimple.
- (3) $\operatorname{ch} V(\lambda) = \operatorname{ch} V_q(\lambda)$.

<u>Fact.</u> V: an arbitrary f.d. simple $U_q(\mathcal{L}\mathfrak{g})$ -module

$$ightsquigarrow \exists ! \lambda \in P^+ ext{ s.t. } V \cong V_q(\lambda) \oplus \bigoplus_{\mu < \lambda} V_q(\mu)^{\oplus m_\mu(V)} ext{ as a } U_q(\mathfrak{g}) ext{-module}.$$

In this case, V is called an **affinization** of $V_q(\lambda)$.

$$ig\{U_q(\mathfrak{g})\text{-isom. classes of affiniz. of }V_q(\lambda)ig\} \Leftarrow \mathsf{partial} \;\mathsf{order} \;\mathsf{is} \;\mathsf{defined}$$
 $ig([V] \geq [W] \Leftrightarrow ig\{m_\mu(V)ig\}_\mu \geq ig\{m_\mu(W)ig\}_\mu \;\mathsf{w.r.t.} \;\mathsf{lexicographic} \;\mathsf{order}ig)$

Definition

V: minimal affinization of $V_q(\lambda)$

 $\overset{\mathsf{def}}{\Leftrightarrow} \circ V$ is an affinization of $V_q(\lambda)$

 \circ the isom. class of V is minimal among affiniz. of $V_q(\lambda)$

<u>Fact.</u> V: an arbitrary f.d. simple $U_q(\mathcal{L}\mathfrak{g})$ -module

$$ightsquigarrow \exists ! \lambda \in P^+ ext{ s.t. } V \cong V_q(\lambda) \oplus \bigoplus_{\mu < \lambda} V_q(\mu)^{\oplus m_\mu(V)} ext{ as a } U_q(\mathfrak{g}) ext{-module}.$$

In this case, V is called an **affinization** of $V_q(\lambda)$.

$$ig\{U_q(\mathfrak{g})\mbox{-isom. classes of affiniz. of }V_q(\lambda)ig\} \Leftarrow \text{partial order is defined}$$
 $ig([V] \geq [W] \Leftrightarrow ig\{m_\mu(V)ig\}_\mu \geq ig\{m_\mu(W)ig\}_\mu \text{ w.r.t. lexicographic order}ig)$

Definition

V: minimal affinization of $V_q(\lambda)$

def

 $\stackrel{\mathsf{def}}{\Leftrightarrow} \circ V$ is an affinization of $V_q(\lambda)$

 \circ the isom. class of V is minimal among affiniz. of $V_q(\lambda)$

<u>Fact.</u> V: an arbitrary f.d. simple $U_q(\mathcal{L}\mathfrak{g})$ -module

$$ightsquigarrow {}^{\exists !}\lambda \in P^+$$
 s.t. $V \cong V_q(\lambda) \oplus \bigoplus_{\mu < \lambda} V_q(\mu)^{\oplus m_\mu(V)}$ as a $U_q(\mathfrak{g})$ -module.

In this case, V is called an **affinization** of $V_q(\lambda)$.

$$\{U_q(\mathfrak{g})\text{-isom. classes of affiniz. of }V_q(\lambda)\} \Leftarrow \text{partial order is defined}$$

$$ig([V] \geq [W] \Leftrightarrow ig\{m_{\mu}(V)ig\}_{\mu} \geq ig\{m_{\mu}(W)ig\}_{\mu} ext{ w.r.t. lexicographic order}ig)$$

Definition

V: minimal affinization of $V_q(\lambda)$

 $\overset{\mathsf{def}}{\Leftrightarrow} \circ \ V$ is an affinization of $V_q(\lambda)$

 \circ the isom. class of V is minimal among affiniz. of $V_q(\lambda)$.

Minimal affinizations for $\mathfrak{g}=\mathfrak{sl}_{n+1}$

When
$$\mathfrak{g}=\mathfrak{sl}_{n+1}$$
, \exists alg. hom. $\varphi\colon U_q(\mathcal{L}\mathfrak{g}) \twoheadrightarrow U_q(\mathfrak{g})$ (evaluation map) (q -analog of the map $\mathcal{L}\mathfrak{g} \twoheadrightarrow \mathfrak{g}\colon x\otimes f \to f(a)x$ for any $a\in \mathbb{C}^\times$) $\rightsquigarrow \varphi^*V_q(\lambda)$: simple $U_q(\mathcal{L}\mathfrak{g})$ -mod. \Leftarrow minimal affinization of $V_q(\lambda)$ ($\because \varphi^*V_q(\lambda)\cong V_q(\lambda)$ as a $U_q(\mathfrak{g})$ -mod.)

Remark. If $\mathfrak{g} \neq \mathfrak{sl}_{n+1}$, evaluation map **does not** exist.

 \leadsto Most of minimal affinizations are reducible as a $U_q(\mathfrak{g})$ -module, and it is not easy to determine the decompositions.

Another example

Minimal affinizations for $\mathfrak{g}=\mathfrak{sl}_{n+1}$

When
$$\mathfrak{g} = \mathfrak{sl}_{n+1}$$
, \exists alg. hom. $\varphi \colon U_q(\mathcal{L}\mathfrak{g}) \twoheadrightarrow U_q(\mathfrak{g})$ (evaluation map) (q -analog of the map $\mathcal{L}\mathfrak{g} \twoheadrightarrow \mathfrak{g} \colon x \otimes f \to f(a)x$ for any $a \in \mathbb{C}^\times$) $\rightsquigarrow \varphi^*V_q(\lambda)$: simple $U_q(\mathcal{L}\mathfrak{g})$ -mod. \Leftarrow minimal affinization of $V_q(\lambda)$ ($\because \varphi^*V_q(\lambda) \cong V_q(\lambda)$ as a $U_q(\mathfrak{g})$ -mod.)

Remark. If $\mathfrak{g} \neq \mathfrak{sl}_{n+1}$, evaluation map **does not** exist.

 \sim Most of minimal affinizations are reducible as a $U_q(\mathfrak{g})$ -module, and it is not easy to determine the decompositions.

Another example

Minimal affinizations for $\mathfrak{g}=\mathfrak{sl}_{n+1}$

When $\mathfrak{g} = \mathfrak{sl}_{n+1}$, \exists alg. hom. $\varphi \colon U_q(\mathcal{L}\mathfrak{g}) \twoheadrightarrow U_q(\mathfrak{g})$ (evaluation map) (q-analog of the map $\mathcal{L}\mathfrak{g} \twoheadrightarrow \mathfrak{g} \colon x \otimes f \to f(a)x$ for any $a \in \mathbb{C}^\times$) $\rightsquigarrow \varphi^*V_q(\lambda)$: simple $U_q(\mathcal{L}\mathfrak{g})$ -mod. \Leftarrow minimal affinization of $V_q(\lambda)$ ($\because \varphi^*V_q(\lambda) \cong V_q(\lambda)$ as a $U_q(\mathfrak{g})$ -mod.)

Remark. If $\mathfrak{g} \neq \mathfrak{sl}_{n+1}$, evaluation map **does not** exist.

 \sim Most of minimal affinizations are reducible as a $U_q(\mathfrak{g})$ -module, and it is not easy to determine the decompositions.

Another example

Minimal affinizations for $\mathfrak{g}=\mathfrak{sl}_{n+1}$

When $\mathfrak{g} = \mathfrak{sl}_{n+1}$, \exists alg. hom. $\varphi \colon U_q(\mathcal{L}\mathfrak{g}) \twoheadrightarrow U_q(\mathfrak{g})$ (evaluation map) (q-analog of the map $\mathcal{L}\mathfrak{g} \twoheadrightarrow \mathfrak{g} \colon x \otimes f \to f(a)x$ for any $a \in \mathbb{C}^\times$) $\rightsquigarrow \varphi^*V_q(\lambda)$: simple $U_q(\mathcal{L}\mathfrak{g})$ -mod. \Leftarrow minimal affinization of $V_q(\lambda)$ ($\because \varphi^*V_q(\lambda) \cong V_q(\lambda)$ as a $U_q(\mathfrak{g})$ -mod.)

Remark. If $\mathfrak{g} \neq \mathfrak{sl}_{n+1}$, evaluation map **does not** exist.

 \sim Most of minimal affinizations are reducible as a $U_q(\mathfrak{g})$ -module, and it is not easy to determine the decompositions.

Another example

Main Theorem

In the sequel, assume that $\mathfrak g$ is of type ABCD.

Let $\lambda \in P^+$, and let $L_q(\lambda)$ be a minimal affinization of $V_q(\lambda)$.

Theorem

Assume that
$$\begin{cases} \langle h_n, \lambda \rangle = 0 & \text{if } \mathfrak{g} \colon \text{type } BC \\ \langle h_{n-1}, \lambda \rangle = \langle h_n, \lambda \rangle = 0 & \text{if } \mathfrak{g} \colon \text{type } D. \end{cases}$$

Then we have

$$\operatorname{ch} L_q(\lambda) = \operatorname{det} \left(\operatorname{ch} L_q((\lambda_i - i + j) \varpi_1) \right)_{1 \le i, j \le n},$$

where $\lambda_i := \sum_{k \geq i} \langle h_i, \lambda \rangle \in \mathbb{Z}_{\geq 0}$ for $1 \leq i \leq n$.

Remark. $\operatorname{ch} L_q((\lambda_i-i+j)\varpi_1)$ can be written explicitly.

Main Theorem

In the sequel, assume that $\mathfrak g$ is of type ABCD.

Let $\lambda \in P^+$, and let $L_q(\lambda)$ be a minimal affinization of $V_q(\lambda)$.

Theorem

Assume that
$$\begin{cases} \langle h_n, \lambda \rangle = 0 & \text{if } \mathfrak{g} : \text{ type } BC, \\ \langle h_{n-1}, \lambda \rangle = \langle h_n, \lambda \rangle = 0 & \text{if } \mathfrak{g} : \text{ type } D. \end{cases}$$

Then we have

$$\operatorname{ch} L_q(\lambda) = \operatorname{det} \left(\operatorname{ch} L_q((\lambda_i - i + j)\varpi_1) \right)_{1 \leq i,j \leq n},$$

where $\lambda_i := \sum_{k \geq i} \langle h_i, \lambda \rangle \in \mathbb{Z}_{\geq 0}$ for $1 \leq i \leq n$.

Remark. $\operatorname{ch} L_q((\lambda_i - i + j)\varpi_1)$ can be written explicitly.

$$\operatorname{ch} L_q(\lambda) = \operatorname{det} \left(\operatorname{ch} L_q((\lambda_i - i + j)\varpi_1) \right)_{1 \leq i,j \leq n}.$$

- 1. In type A, this is the JT formula since $\operatorname{ch} L_a(\lambda) = \operatorname{ch} V(\lambda)$.
- 2. In [Nakai-Nakanishi, 06], they have conjectured some formulas for q-characters of $L_q(\lambda)$ (q-character $\stackrel{\text{specialize}}{\to}$ character). In fact the specialization of their formula coincides with $\det\left(\operatorname{ch} L_q((\lambda_i-i+j)\varpi_1)\right)_{1\leq i,j\leq n}$.
- 3. In type B, NN conj. has been proven by [Hernandez, 07].
- 4. In type *CD*, any closed character formula for minimal affinizations has not been obtained before (except for some special ones such as KR modules).

$$\operatorname{ch} L_q(\lambda) = \operatorname{det} \left(\operatorname{ch} L_q((\lambda_i - i + j)\varpi_1) \right)_{1 \leq i,j \leq n}.$$

- 1. In type A, this is the JT formula since $\operatorname{ch} L_q(\lambda) = \operatorname{ch} V(\lambda)$.
- 2. In [Nakai-Nakanishi, 06], they have conjectured some formulas for q-characters of $L_q(\lambda)$ (q-character $\stackrel{\text{specialize}}{\to}$ character). In fact the specialization of their formula coincides with $\det\left(\operatorname{ch} L_q((\lambda_i-i+j)\varpi_1)\right)_{1\leq i,i\leq n}$.
- 3. In type B, NN conj. has been proven by [Hernandez, 07].
- 4. In type *CD*, any closed character formula for minimal affinizations has not been obtained before (except for some special ones such as KR modules).

$$\operatorname{ch} L_q(\lambda) = \operatorname{det} \left(\operatorname{ch} L_q((\lambda_i - i + j)\varpi_1) \right)_{1 \leq i,j \leq n}.$$

- 1. In type A, this is the JT formula since $\operatorname{ch} L_q(\lambda) = \operatorname{ch} V(\lambda)$.
- 2. In [Nakai-Nakanishi, 06], they have conjectured some formulas for q-characters of $L_q(\lambda)$ (q-character $\stackrel{\text{specialize}}{\to}$ character). In fact the specialization of their formula coincides with $\det\left(\operatorname{ch} L_q((\lambda_i-i+j)\varpi_1)\right)_{1\leq i,j\leq n}$.
- 3. In type B, NN conj. has been proven by [Hernandez, 07].
- 4. In type *CD*, any closed character formula for minimal affinizations has not been obtained before (except for some special ones such as KR modules).

$$\operatorname{ch} L_q(\lambda) = \operatorname{det} \left(\operatorname{ch} L_q((\lambda_i - i + j)\varpi_1) \right)_{1 \leq i,j \leq n}.$$

- 1. In type A, this is the JT formula since $\operatorname{ch} L_q(\lambda) = \operatorname{ch} V(\lambda)$.
- 2. In [Nakai-Nakanishi, 06], they have conjectured some formulas for q-characters of $L_q(\lambda)$ (q-character $\stackrel{\text{specialize}}{\to}$ character). In fact the specialization of their formula coincides with $\det\left(\operatorname{ch} L_q((\lambda_i-i+j)\varpi_1)\right)_{1\leq i, i\leq n}$.
- 3. In type B, NN conj. has been proven by [Hernandez, 07].
- 4. In type *CD*, any closed character formula for minimal affinizations has not been obtained before (except for some special ones such as KR modules).

Graded limits

$$L_q(\lambda) \colon U_q(\mathcal{L}\mathfrak{g}) ext{-mod.}/\mathbb{C}(q) \stackrel{q o 1}{\longrightarrow} L_1(\lambda) \colon \mathcal{L}\mathfrak{g} ext{-mod.}/\mathbb{C} ext{ (classical limit)}$$
 $\stackrel{\mathsf{restrict}}{\longrightarrow} L_1(\lambda) \colon \mathfrak{g}[t] ext{-module} \quad \left(\mathfrak{g}[t] = \mathfrak{g}\otimes\mathbb{C}[t] \subseteq \mathcal{L}\mathfrak{g} = \mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]\right)$

Fact.
$$\exists a \in \mathbb{C}^{\times}$$
 s.t. $(\mathfrak{g} \otimes (t+a)^{N}) L_1(\lambda) = 0$ $(N \gg 0)$

$$ightharpoonup$$
 Define an auto. au_a on $\mathfrak{g}[t]$ by $au_aig(g\otimes f(t)ig)=g\otimes f(t+a)$

$$L(\lambda) := \tau_a^*(L_1(\lambda))$$
: graded limit of $L_q(\lambda)$ ($\underline{\mathbb{Z}}$ -graded $\mathfrak{g}[t]$ -module)

Remark.
$$\operatorname{ch} L_q(\lambda) = \operatorname{ch} L(\lambda)$$
.

 $\mathfrak{g} = \mathfrak{n}_+ \oplus \mathfrak{h} \oplus \mathfrak{n}_-$: triangular decomosition,

Define $\Delta'_+ := \{ \alpha \in \Delta_+ \mid \alpha = \sum m_i \alpha_i, \ m_i \leq 1 \} \subseteq \Delta_+.$

Theorem (N)

Let $M(\lambda)$ be the $\mathfrak{g}[t]$ -module generated by a vector v with relations

$$\mathfrak{n}_+[t]v = 0, \quad (h \otimes t^n)v = \delta_{0,n}\lambda(h)v \text{ for } h \in \mathfrak{h}, \quad f_i^{\lambda(h_i)+1}v = 0,$$

$$(f_\alpha \otimes t)v = 0 \text{ for } \alpha \in \Delta'_+.$$

Then the graded limit $L(\lambda)$ is isomorphic to $M(\lambda)$.

Theorem (Chari-Greenstein, 11)

$$\sum_{(\lambda,s)\in\Gamma(\mu)}(-1)^s\dim\operatorname{Hom}_{\mathfrak{g}}\big(V(\lambda),\bigwedge^{\mathfrak{g}}\mathfrak{g}\otimes V(\mu)\big)\mathrm{ch}\, M(\lambda)=\mathrm{ch}\, V(\mu),$$

$$\Gamma(\mu) = \{(\lambda, s) \mid \mu = \lambda + \sum_{\alpha \notin \Delta'_+} n_{\alpha} \alpha, \sum n_{\alpha} = s\} \subseteq P^+ \times \mathbb{Z}_{\geq 0}.$$

Theorem (Sam, 14)

Setting
$$H_{\lambda} = \det \left(\operatorname{ch} L_q \left((\lambda_i - i + j) \varpi_1 \right) \right)_{1 \leq i, j \leq n}$$
,
$$\sum_{(\lambda, s) \in \Gamma(\mu)} (-1)^s \dim \operatorname{Hom}_{\mathfrak{g}} \left(V(\lambda), \bigwedge^s \mathfrak{g} \otimes V(\mu) \right) H_{\lambda} = \operatorname{ch} V(\mu).$$

$$\therefore H_{\lambda} = \operatorname{ch} M(\lambda) = \operatorname{ch} L(\lambda) = \operatorname{ch} L_{q}(\lambda).$$

Theorem (Chari-Greenstein, 11)

$$\sum_{(\lambda,s)\in\Gamma(\mu)}(-1)^s\dim\mathrm{Hom}\,_{\mathfrak{g}}\big(V(\lambda),\bigwedge^{\mathfrak{g}}\mathfrak{g}\otimes V(\mu)\big)\mathrm{ch}\,M(\lambda)=\mathrm{ch}\,V(\mu),$$

$$\Gamma(\mu) = \{(\lambda, s) \mid \mu = \lambda + \sum_{\alpha \notin \Delta'_+} n_{\alpha} \alpha, \sum n_{\alpha} = s\} \subseteq P^+ \times \mathbb{Z}_{\geq 0}.$$

Theorem (Sam, 14)

Setting
$$H_{\lambda} = \det \left(\operatorname{ch} L_q \left((\lambda_i - i + j) \varpi_1 \right) \right)_{1 \leq i, j \leq n}$$
,
$$\sum_{(\lambda, s) \in \Gamma(\mu)} (-1)^s \dim \operatorname{Hom}_{\mathfrak{g}} \left(V(\lambda), \bigwedge^s \mathfrak{g} \otimes V(\mu) \right) H_{\lambda} = \operatorname{ch} V(\mu).$$

$$\therefore H_{\lambda} = \operatorname{ch} M(\lambda) = \operatorname{ch} L(\lambda) = \operatorname{ch} L_{q}(\lambda).$$